rgeometry/algorithms/convex_hull/graham_scan.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
use crate::data::{Point, Polygon, PolygonConvex};
use crate::{Error, Orientation, PolygonScalar, TotalOrd};
// https://en.wikipedia.org/wiki/Graham_scan
// Doesn't allocate.
// Properties:
// No panics.
// All Ok results are valid convex polygons.
// No points are outside the resulting convex polygon.
/// Convex hull of a set of points.
///
/// [Graham scan][wiki] algorithm for finding the smallest convex polygon which
/// contains all the given points.
///
/// # Errors
/// Will return an error iff the input set contains less than three distinct points.
///
/// # Properties
/// * No points from the input set will be outside the returned convex polygon.
/// * All vertices in the convex polygon are from the input set.
///
/// # Time complexity
/// $O(n \log n)$
///
/// # Examples
///
/// ```rust
/// # pub fn main() {
/// # use rgeometry::algorithms::convex_hull;
/// # use rgeometry::data::Point;
/// # use rgeometry::Error;
/// let empty_set: Vec<Point<i32,2>> = vec![];
/// assert_eq!(
/// convex_hull(empty_set).err(),
/// Some(Error::InsufficientVertices))
/// # }
/// ```
///
/// ```rust
/// # pub fn main() {
/// # use rgeometry::algorithms::convex_hull;
/// # use rgeometry::data::Point;
/// # use rgeometry::Error;
/// let dups = vec![Point::new([0,0])].repeat(3);
/// assert_eq!(
/// convex_hull(dups).err(),
/// Some(Error::InsufficientVertices))
/// # }
/// ```
///
/// [wiki]: https://en.wikipedia.org/wiki/Graham_scan
// ```no_run
// # pub fn main() {
// # use rgeometry::algorithms::convex_hull;
// # use rgeometry_wasm::playground::*;
// #
// # static START: std::sync::Once = std::sync::Once::new();
// # START.call_once(|| on_mousemove(|_event| main()));
// #
// # clear_screen();
// # set_viewport(2., 2.);
// #
// # let pts = with_points(7);
// # let points = pts.clone();
// if let Ok(convex) = convex_hull(points) {
// render_polygon(&convex);
// # context().set_fill_style(&"grey".into());
// # context().fill();
// }
// # for pt in &pts {
// # render_point(&pt);
// # }
// # }
// ```
//
// <iframe src="https://web.rgeometry.org/wasm/gist/eac484cd855d001815d23a053919b5ca"></iframe>
//
pub fn convex_hull<T>(mut pts: Vec<Point<T>>) -> Result<PolygonConvex<T>, Error>
where
T: PolygonScalar,
{
let smallest = &smallest_point(&pts)?;
pts.sort_unstable_by(|a, b| {
smallest
.ccw_cmp_around(a, b)
.then_with(|| (a.y_coord(), a.x_coord()).total_cmp(&(b.y_coord(), b.x_coord())))
// .then_with(|| smallest.cmp_distance_to(a, b))
});
if pts.len() < 3 {
return Err(Error::InsufficientVertices);
}
debug_assert_eq!(&pts[0], smallest);
let mut write_idx = 1;
let mut read_idx = 2;
// Drop points that are co-linear with our origin.
{
let origin = pts[write_idx - 1].clone();
while read_idx < pts.len() {
if Point::orient(&origin, &pts[write_idx], &pts[read_idx]) == Orientation::CoLinear {
pts.swap(read_idx, write_idx);
read_idx += 1;
} else {
break;
}
}
}
// Filter out points until all consecutive points are oriented counter-clockwise.
while read_idx < pts.len() {
let p1 = &pts[read_idx];
let p2 = &pts[write_idx];
let p3 = &pts[write_idx - 1];
match Point::orient(p3, p2, p1) {
Orientation::CounterClockWise => {
pts.swap(read_idx, write_idx + 1);
read_idx += 1;
write_idx += 1;
}
Orientation::ClockWise | Orientation::CoLinear => {
write_idx -= 1;
}
}
}
pts.truncate(write_idx + 1);
if pts.len() < 3 {
return Err(Error::InsufficientVertices);
}
Ok(PolygonConvex::new_unchecked(Polygon::new_unchecked(pts)))
}
// Find the smallest point and remove it from the vector
// O(n)
fn smallest_point<T>(pts: &[Point<T>]) -> Result<Point<T>, Error>
where
T: PolygonScalar,
{
Ok(
pts
.iter()
.min_by(|a, b| TotalOrd::total_cmp(&(a.y_coord(), a.x_coord()), &(b.y_coord(), b.x_coord())))
.ok_or(Error::InsufficientVertices)?
.clone(),
)
}
#[cfg(test)]
#[cfg(not(tarpaulin_include))]
mod tests {
use super::*;
use crate::data::PointLocation;
use crate::testing::*;
use claims::assert_ok;
use num_bigint::BigInt;
use proptest::collection::*;
use proptest::prelude::*;
use test_strategy::proptest;
#[test]
fn convex_hull_colinear() {
let points = vec![
Point::new([0, 0]),
Point::new([1, 0]),
Point::new([2, 0]),
Point::new([3, 0]),
Point::new([4, 0]),
Point::new([1, 1]),
];
let poly = convex_hull(points).unwrap();
assert_ok!(poly.validate());
}
#[test]
fn convex_hull_colinear_rev() {
let points = vec![
Point::new([0, 0]),
Point::new([1, 0]),
Point::new([0, 9]),
Point::new([0, 8]),
Point::new([0, 7]),
Point::new([0, 6]),
];
let poly = convex_hull(points).unwrap();
assert_ok!(poly.validate());
}
#[test]
fn convex_hull_dups() {
let points = vec![
Point::new([0, 0]),
Point::new([1, 0]),
Point::new([0, 0]),
Point::new([1, 0]),
Point::new([2, 2]),
Point::new([2, 2]),
Point::new([5, 1]),
Point::new([5, 1]),
];
let poly = convex_hull(points).unwrap();
assert_ok!(poly.validate());
}
#[test]
fn convex_hull_insufficient_dups() {
let points = vec![
Point::new([0, 0]),
Point::new([0, 0]),
Point::new([2, 2]),
Point::new([2, 2]),
Point::new([0, 0]),
Point::new([2, 2]),
];
assert_eq!(convex_hull(points).err(), Some(Error::InsufficientVertices));
}
#[test]
fn convex_hull_invalid() {
let points: Vec<Point<i64>> = vec![
Point { array: [0, 0] },
Point { array: [100, 0] },
Point { array: [50, 1] },
Point { array: [40, 1] },
Point { array: [0, 100] },
];
let points: Vec<Point<BigInt, 2>> = points.into_iter().map(|pt| pt.cast()).collect();
let poly = convex_hull(points).unwrap();
assert_ok!(poly.validate());
}
#[test]
fn unit_1() {
let points: Vec<Point<BigInt>> = vec![
Point::new([0, 0]).into(),
Point::new([-1, 1]).into(),
Point::new([0, 1]).into(),
Point::new([-717193444810564826, 1]).into(),
];
let poly = convex_hull(points).unwrap();
assert_ok!(poly.validate());
}
#[test]
fn unit_2() {
let points: Vec<Point<i8>> = vec![
Point::new([0, 0]),
Point::new([0, -10]),
Point::new([-13, 0]),
];
let poly = convex_hull(points).unwrap();
assert_ok!(poly.validate());
}
#[proptest]
fn convex_hull_prop(#[strategy(vec(any_r(), 0..100))] pts: Vec<Point<BigInt>>) {
if let Ok(poly) = convex_hull(pts.clone()) {
// Prop #1: Results are valid.
prop_assert_eq!(poly.validate().err(), None);
// Prop #2: No points from the input set are outside the polygon.
for pt in pts.iter() {
prop_assert_ne!(poly.locate(pt), PointLocation::Outside)
}
// Prop #3: All vertices are in the input set.
for pt in poly.iter() {
prop_assert!(pts.contains(pt))
}
}
}
#[proptest]
fn convex_hull_prop_i8(#[strategy(vec(any::<Point<i8>>(), 0..100))] pts: Vec<Point<i8>>) {
if let Ok(poly) = convex_hull(pts.clone()) {
// Prop #1: Results are valid.
prop_assert_eq!(poly.validate().err(), None);
// Prop #2: No points from the input set are outside the polygon.
for pt in pts.iter() {
prop_assert_ne!(poly.locate(pt), PointLocation::Outside)
}
// Prop #3: All vertices are in the input set.
for pt in poly.iter() {
prop_assert!(pts.contains(pt))
}
}
}
}