rgeometry/data/polygon/
convex.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
use num_traits::*;
use ordered_float::OrderedFloat;
use rand::distributions::uniform::SampleUniform;
use rand::distributions::{Distribution, Standard};
use rand::seq::SliceRandom;
use rand::Rng;
use std::ops::*;

use crate::data::{Point, PointLocation, TriangleView, Vector};
use crate::{Error, Orientation, PolygonScalar, TotalOrd};

use super::Polygon;

#[derive(Debug, Clone, Hash)]
pub struct PolygonConvex<T>(Polygon<T>);

///////////////////////////////////////////////////////////////////////////////
// PolygonConvex

impl<T> PolygonConvex<T>
where
  T: PolygonScalar,
{
  /// Assume that a polygon is convex.
  ///
  /// # Safety
  /// The input polygon has to be strictly convex, ie. no vertices are allowed to
  /// be concave or colinear.
  ///
  /// # Time complexity
  /// $O(1)$
  pub fn new_unchecked(poly: Polygon<T>) -> PolygonConvex<T> {
    PolygonConvex(poly)
  }

  /// Locate a point relative to a convex polygon.
  ///
  /// # Time complexity
  /// $O(\log n)$
  ///
  /// # Examples
  /// <iframe src="https://web.rgeometry.org/wasm/gist/2cb9ff5bd6ce24f395a5ea30280aabee"></iframe>
  ///
  pub fn locate(&self, pt: &Point<T, 2>) -> PointLocation {
    let poly = &self.0;
    let vertices = self.boundary_slice();
    let p0 = poly.point(vertices[0]);
    let mut lower = 1;
    let mut upper = vertices.len() - 1;
    while lower + 1 < upper {
      let middle = (lower + upper) / 2;
      if Point::orient(p0, poly.point(vertices[middle]), pt) == Orientation::CounterClockWise {
        lower = middle;
      } else {
        upper = middle;
      }
    }
    let p1 = poly.point(vertices[lower]);
    let p2 = poly.point(vertices[upper]);
    let triangle = TriangleView::new_unchecked([p0, p1, p2]);
    triangle.locate(pt)
  }

  /// Validates the following properties:
  ///  * Each vertex is convex, ie. not concave or colinear.
  ///  * All generate polygon properties hold true (eg. no duplicate points, no self-intersections).
  ///
  /// # Time complexity
  /// $O(n \log n)$
  pub fn validate(&self) -> Result<(), Error> {
    for cursor in self.0.iter_boundary() {
      if cursor.orientation() != Orientation::CounterClockWise {
        return Err(Error::ConvexViolation);
      }
    }
    self.0.validate()
  }

  pub fn float(self) -> PolygonConvex<OrderedFloat<f64>>
  where
    T: Clone + Into<f64>,
  {
    PolygonConvex::new_unchecked(self.0.float())
  }

  /// $O(1)$
  pub fn polygon(&self) -> &Polygon<T> {
    self.into()
  }

  /// Uniformly sample a random convex polygon.
  ///
  /// The output polygon is rooted in `(0,0)`, grows upwards, and has a height and width of [`T::max_value()`](Bounded::max_value).
  ///
  /// # Time complexity
  /// $O(n \log n)$
  ///
  // # Examples
  // ```no_run
  // # use rgeometry_wasm::playground::*;
  // # use rgeometry::data::*;
  // # clear_screen();
  // # set_viewport(2.0, 2.0);
  // # let convex: PolygonConvex<i8> = {
  // PolygonConvex::random(3, &mut rand::thread_rng())
  // # };
  // # render_polygon(&convex.float().normalize());
  // ```
  // <iframe src="https://web.rgeometry.org/wasm/gist/9abc54a5e2e3d33e3dd1785a71e812d2"></iframe>
  pub fn random<R>(n: usize, rng: &mut R) -> PolygonConvex<T>
  where
    T: Bounded + PolygonScalar + SampleUniform,
    R: Rng + ?Sized,
  {
    let n = n.max(3);
    loop {
      let vs = {
        let mut vs = random_vectors(n, rng);
        Vector::sort_around(&mut vs);
        vs
      };
      let vertices: Vec<Point<T, 2>> = vs
        .into_iter()
        .scan(Point::zero(), |st, vec| {
          *st += vec;
          Some((*st).clone())
        })
        .collect();
      let n_vertices = (*vertices).len();
      debug_assert_eq!(n_vertices, n);
      // FIXME: Use the convex hull algorithm for polygons rather than point sets.
      //        It runs in O(n) rather than O(n log n). Hasn't been implemented, yet, though.
      // If the vertices are all colinear then give up and try again.
      // FIXME: If the RNG always returns zero then we might loop forever.
      //        Maybe limit the number of recursions.
      if let Ok(p) = crate::algorithms::convex_hull(vertices) {
        return p;
      }
    }
  }
}

impl PolygonConvex<OrderedFloat<f64>> {
  #[must_use]
  pub fn normalize(&self) -> PolygonConvex<OrderedFloat<f64>> {
    PolygonConvex::new_unchecked(self.0.normalize())
  }
}

///////////////////////////////////////////////////////////////////////////////
// Trait Implementations

impl<T> Deref for PolygonConvex<T> {
  type Target = Polygon<T>;
  fn deref(&self) -> &Self::Target {
    &self.0
  }
}

impl<T> From<PolygonConvex<T>> for Polygon<T> {
  fn from(convex: PolygonConvex<T>) -> Polygon<T> {
    convex.0
  }
}

impl<'a, T> From<&'a PolygonConvex<T>> for &'a Polygon<T> {
  fn from(convex: &'a PolygonConvex<T>) -> &'a Polygon<T> {
    &convex.0
  }
}

impl Distribution<PolygonConvex<isize>> for Standard {
  fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> PolygonConvex<isize> {
    PolygonConvex::random(100, rng)
  }
}

///////////////////////////////////////////////////////////////////////////////
// Helper functions

// Property: random_between(n, max, &mut rng).sum::<usize>() == max
fn random_between_iter<T, R>(n: usize, rng: &mut R) -> impl Iterator<Item = T>
where
  T: PolygonScalar + Bounded + SampleUniform,
  R: Rng + ?Sized,
{
  let zero: T = T::from_constant(0);
  let max: T = Bounded::max_value();
  assert!(n > 0);
  let mut pts = Vec::with_capacity(n);
  while pts.len() < n - 1 {
    pts.push(rng.gen_range(zero.clone()..max.clone()));
  }
  pts.sort_unstable_by(TotalOrd::total_cmp);
  pts.push(max);
  pts.into_iter().scan(zero, |from, x| {
    let out = x.clone() - (*from).clone();
    *from = x;
    Some(out)
  })
}

// Property: random_between_zero(10, 100, &mut rng).iter().sum::<isize>() == 0
fn random_between_zero<T, R>(n: usize, rng: &mut R) -> Vec<T>
where
  T: Bounded + PolygonScalar + SampleUniform,
  R: Rng + ?Sized,
{
  assert!(n >= 2);
  let n_positive = rng.gen_range(1..n); // [1;n[
  let n_negative = n - n_positive;
  assert!(n_positive + n_negative == n);
  let positive = random_between_iter(n_positive, rng);
  let negative = random_between_iter(n_negative, rng).map(|i: T| -i);
  let mut result: Vec<T> = positive.chain(negative).collect();
  result.shuffle(rng);
  result
}

// Random vectors that sum to zero.
fn random_vectors<T, R>(n: usize, rng: &mut R) -> Vec<Vector<T, 2>>
where
  T: Bounded + PolygonScalar + SampleUniform,
  R: Rng + ?Sized,
{
  random_between_zero(n, rng)
    .into_iter()
    .zip(random_between_zero(n, rng))
    .map(|(a, b)| Vector([a, b]))
    .collect()
}

///////////////////////////////////////////////////////////////////////////////
// Tests

#[cfg(test)]
mod tests {
  use super::*;

  use proptest::prelude::*;
  use proptest::proptest as proptest_block;

  proptest_block! {
    // These traits are usually derived but let's not rely on that.
    #[test]
    fn fuzz_convex_traits(poly: PolygonConvex<i8>) {
      let _ = format!("{:?}", &poly);
      let _ = poly.clone();
    }

    #[test]
    fn fuzz_validate(poly: Polygon<i8>) {
      let convex = PolygonConvex::new_unchecked(poly);
      let _ = convex.validate();
    }

    #[test]
    fn all_random_convex_polygons_are_valid_i8(poly: PolygonConvex<i8>) {
      prop_assert_eq!(poly.validate().err(), None)
    }

    #[test]
    fn random_convex_prop(poly: PolygonConvex<i8>) {
      let (min, max) = poly.bounding_box();
      prop_assert_eq!(min.y_coord(), &0);
      let width = max.x_coord() - min.x_coord();
      let height = max.y_coord() - min.y_coord();
      prop_assert_eq!(width, i8::MAX);
      prop_assert_eq!(height, i8::MAX);
    }

    #[test]
    fn all_random_convex_polygons_are_valid_i64(poly: PolygonConvex<i64>) {
      prop_assert_eq!(poly.validate().err(), None)
    }

    #[test]
    fn sum_to_max(n in 1..1000) {
      let mut rng = rand::thread_rng();
      let vecs = random_between_iter::<i8, _>(n as usize, &mut rng);
      prop_assert_eq!(vecs.sum::<i8>(), i8::MAX);

      let vecs = random_between_iter::<i64, _>(n as usize, &mut rng);
      prop_assert_eq!(vecs.sum::<i64>(), i64::MAX);
    }

    #[test]
    fn random_between_zero_properties(n in 2..1000) {
      let mut rng = rand::thread_rng();
      let vecs: Vec<i8> = random_between_zero(n as usize, &mut rng);
      prop_assert_eq!(vecs.iter().sum::<i8>(), 0);
      prop_assert_eq!(vecs.len(), n as usize);

      let vecs: Vec<i64> = random_between_zero(n as usize, &mut rng);
      prop_assert_eq!(vecs.iter().sum::<i64>(), 0);
      prop_assert_eq!(vecs.len(), n as usize);
    }

    #[test]
    fn sum_to_zero_vector(n in 2..1000) {
      let mut rng = rand::thread_rng();
      let vecs: Vec<Vector<i8, 2>> = random_vectors(n as usize, &mut rng);
      prop_assert_eq!(vecs.into_iter().sum::<Vector<i8, 2>>(), Vector([0, 0]))
    }
  }
}