rgeometry/
orientation.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
use std::cmp::Ordering;

use crate::data::Vector;
use crate::PolygonScalar;

#[derive(PartialEq, Eq, PartialOrd, Ord, Debug, Copy, Clone)]
pub enum Orientation {
  CounterClockWise,
  ClockWise,
  CoLinear,
}
use Orientation::*;

#[derive(PartialEq, Eq, PartialOrd, Ord, Debug, Copy, Clone)]
pub enum SoS {
  CounterClockWise,
  ClockWise,
}

// let slope1 = (2^q - 2^r) * (p - q);
// let slope2 = (2^q - 2^p) * (r - q);

impl Orientation {
  /// Determine the direction you have to turn if you walk from `p1`
  /// to `p2` to `p3`.
  ///
  /// For fixed-precision types (i8,i16,i32,i64,etc), this function is
  /// guaranteed to work for any input and never cause any arithmetic overflows.
  ///
  /// # Polymorphism
  ///
  /// This function works with both [Points](crate::data::Point) and [Vectors](Vector). You should prefer to
  /// use [Point::orient](crate::data::Point::orient) when possible.
  ///
  /// # Examples
  ///
  /// ```rust
  /// # use rgeometry::data::Point;
  /// # use rgeometry::Orientation;
  /// let p1 = Point::new([ 0, 0 ]);
  /// let p2 = Point::new([ 0, 1 ]); // One unit above p1.
  /// // (0,0) -> (0,1) -> (0,2) == Orientation::CoLinear
  /// assert!(Orientation::new(&p1, &p2, &Point::new([ 0, 2 ])).is_colinear());
  /// // (0,0) -> (0,1) -> (-1,2) == Orientation::CounterClockWise
  /// assert!(Orientation::new(&p1, &p2, &Point::new([ -1, 2 ])).is_ccw());
  /// // (0,0) -> (0,1) -> (1,2) == Orientation::ClockWise
  /// assert!(Orientation::new(&p1, &p2, &Point::new([ 1, 2 ])).is_cw());
  /// ```
  ///
  pub fn new<T>(p1: &[T; 2], p2: &[T; 2], p3: &[T; 2]) -> Orientation
  where
    T: PolygonScalar,
  {
    // raw_arr_turn(p, q, r)
    match T::cmp_slope(p1, p2, p3) {
      Ordering::Less => Orientation::ClockWise,
      Ordering::Equal => Orientation::CoLinear,
      Ordering::Greater => Orientation::CounterClockWise,
    }
  }

  /// Locate `p2` in relation to the line determined by the point `p1` and the direction
  /// vector.
  ///
  /// For fixed-precision types (i8,i16,i32,i64,etc), this function is
  /// guaranteed to work for any input and never cause any arithmetic overflows.
  ///
  /// This function is identical to [`Orientation::new`]`(p1, p1+v, p2)` but will never
  /// cause arithmetic overflows even if `p+v` would overflow.
  ///
  /// # Examples
  ///
  /// ```rust
  /// # use rgeometry::data::{Vector,Point};
  /// # use rgeometry::Orientation;
  /// let v = Vector([ 1, 1 ]); // Vector pointing to the top-right corner.
  /// let p1 = Point::new([ 5, 5 ]);
  /// assert!(Orientation::along_vector(&p1, &v, &Point::new([ 6, 6 ])).is_colinear());
  /// assert!(Orientation::along_vector(&p1, &v, &Point::new([ 7, 8 ])).is_ccw());
  /// assert!(Orientation::along_vector(&p1, &v, &Point::new([ 8, 7 ])).is_cw());
  /// ```
  pub fn along_vector<T>(p1: &[T; 2], vector: &Vector<T, 2>, p2: &[T; 2]) -> Orientation
  where
    T: PolygonScalar,
  {
    match T::cmp_vector_slope(&vector.0, p1, p2) {
      Ordering::Less => Orientation::ClockWise,
      Ordering::Equal => Orientation::CoLinear,
      Ordering::Greater => Orientation::CounterClockWise,
    }
  }

  pub fn along_perp_vector<T>(p1: &[T; 2], vector: &Vector<T, 2>, p2: &[T; 2]) -> Orientation
  where
    T: PolygonScalar,
  {
    match T::cmp_perp_vector_slope(&vector.0, p1, p2) {
      Ordering::Less => Orientation::ClockWise,
      Ordering::Equal => Orientation::CoLinear,
      Ordering::Greater => Orientation::CounterClockWise,
    }
  }

  pub fn is_colinear(self) -> bool {
    matches!(self, Orientation::CoLinear)
  }

  pub fn is_ccw(self) -> bool {
    matches!(self, Orientation::CounterClockWise)
  }

  pub fn is_cw(self) -> bool {
    matches!(self, Orientation::ClockWise)
  }

  #[must_use]
  pub fn then(self, other: Orientation) -> Orientation {
    match self {
      Orientation::CoLinear => other,
      _ => self,
    }
  }

  pub fn break_ties(self, a: u32, b: u32, c: u32) -> SoS {
    match self {
      CounterClockWise => SoS::CounterClockWise,
      ClockWise => SoS::ClockWise,
      CoLinear => SoS::new(a, b, c),
    }
  }

  pub fn sos(self, other: SoS) -> SoS {
    match self {
      CounterClockWise => SoS::CounterClockWise,
      ClockWise => SoS::ClockWise,
      CoLinear => other,
    }
  }

  // pub fn around_origin<T>(q: &[T; 2], r: &[T; 2]) -> Orientation
  // where
  //   T: Ord + Mul<Output = T> + Clone + Extended,
  // {
  //   raw_arr_turn_origin(q, r)
  // }

  #[must_use]
  pub fn reverse(self) -> Orientation {
    match self {
      Orientation::CounterClockWise => Orientation::ClockWise,
      Orientation::ClockWise => Orientation::CounterClockWise,
      Orientation::CoLinear => Orientation::CoLinear,
    }
  }

  pub fn ccw_cmp_around_with<T>(
    vector: &Vector<T, 2>,
    p1: &[T; 2],
    p2: &[T; 2],
    p3: &[T; 2],
  ) -> Ordering
  where
    T: PolygonScalar,
  {
    let aq = Orientation::along_vector(p1, vector, p2);
    let ar = Orientation::along_vector(p1, vector, p3);
    // let on_zero = |d: &[T; 2]| {
    //   !((d[0] < p[0] && z[0].is_positive())
    //     || (d[1] < p[1] && z[1].is_positive())
    //     || (d[0] > p[0] && z[0].is_negative())
    //     || (d[1] > p[1] && z[1].is_negative()))
    // };
    let on_zero = |d: &[T; 2]| match Orientation::along_perp_vector(p1, vector, d) {
      CounterClockWise => false,
      ClockWise => true,
      CoLinear => true,
    };
    let cmp = || match Orientation::new(p1, p2, p3) {
      CounterClockWise => Ordering::Less,
      ClockWise => Ordering::Greater,
      CoLinear => Ordering::Equal,
    };
    match (aq, ar) {
      // Easy cases: Q and R are on either side of the line p->z:
      (CounterClockWise, ClockWise) => Ordering::Less,
      (ClockWise, CounterClockWise) => Ordering::Greater,
      // A CoLinear point may be in front of p->z (0 degree angle) or behind
      // it (180 degree angle). If the other point is clockwise, it must have an
      // angle greater than 180 degrees and must therefore be greater than the
      // colinear point.
      (CoLinear, ClockWise) => Ordering::Less,
      (ClockWise, CoLinear) => Ordering::Greater,

      // if Q and R are on the same side of P->Z then the most clockwise point
      // will have the smallest angle.
      (CounterClockWise, CounterClockWise) => cmp(),
      (ClockWise, ClockWise) => cmp(),

      // CoLinear points have an angle of either 0 degrees or 180 degrees. on_zero
      // can distinguish these two cases:
      //    on_zero(p) => 0 degrees.
      //   !on_zero(p) => 180 degrees.
      (CounterClockWise, CoLinear) => {
        if on_zero(p3) {
          Ordering::Greater // angle(r) = 0 & 0 < angle(q) < 180. Thus: Q > R
        } else {
          Ordering::Less // angle(r) = 180 & 0 < angle(q) < 180. Thus: Q < R
        }
      }
      (CoLinear, CounterClockWise) => {
        if on_zero(p2) {
          Ordering::Less
        } else {
          Ordering::Greater
        }
      }
      (CoLinear, CoLinear) => match (on_zero(p2), on_zero(p3)) {
        (true, true) => Ordering::Equal,
        (false, false) => Ordering::Equal,
        (true, false) => Ordering::Less,
        (false, true) => Ordering::Greater,
      },
    }
  }
}

// https://arxiv.org/abs/math/9410209
// Simulation of Simplicity.
// Break ties (ie colinear orientations) in an arbitrary but consistent way.
impl SoS {
  // p: Point::new([a, 2^a])
  // q: Point::new([b, 2^b])
  // r: Point::new([c, 2^c])
  // new(a,b,c) == Orientation::new(p, q, r)
  pub fn new(a: u32, b: u32, c: u32) -> SoS {
    assert_ne!(a, b);
    assert_ne!(b, c);
    assert_ne!(c, a);

    // Combinations:
    //               a<b a<c c<b
    // b a c => CW    _   X   _
    // c b a => CW    _   _   X
    // a c b => CW    X   X   X
    // b c a => CCW   _   _   _
    // c a b => CCW   X   _   X
    // a b c => CCW   X   X   _

    let ab = a < b;
    let ac = a < c;
    let cb = c < b;
    if ab ^ ac ^ cb {
      SoS::ClockWise
    } else {
      SoS::CounterClockWise
    }
    // if a < b {
    //   if a < c && c < b {
    //     SoS::ClockWise // a c b
    //   } else {
    //     SoS::CounterClockWise // a b c, c a b
    //   }
    // } else if b < c && c < a {
    //   SoS::CounterClockWise // b c a
    // } else {
    //   SoS::ClockWise // b a c, c b a
    // }
  }

  pub fn orient(self) -> Orientation {
    match self {
      SoS::CounterClockWise => Orientation::CounterClockWise,
      SoS::ClockWise => Orientation::ClockWise,
    }
  }

  #[must_use]
  pub fn reverse(self) -> SoS {
    match self {
      SoS::CounterClockWise => SoS::ClockWise,
      SoS::ClockWise => SoS::CounterClockWise,
    }
  }
}

#[cfg(test)]
#[cfg(not(tarpaulin_include))]
mod tests {
  use super::*;

  use crate::data::Point;
  use num::BigInt;
  use proptest::prelude::*;
  use test_strategy::proptest;

  #[test]
  fn orientation_limit_1() {
    PolygonScalar::cmp_slope(
      &[i8::MAX, i8::MAX],
      &[i8::MIN, i8::MIN],
      &[i8::MIN, i8::MIN],
    );
  }

  #[test]
  fn cmp_slope_1() {
    assert_eq!(
      PolygonScalar::cmp_slope(&[0i8, 0], &[1, 1], &[2, 2],),
      Ordering::Equal
    );
  }

  #[test]
  fn cmp_slope_2() {
    assert_eq!(
      Orientation::new(&[0i8, 0], &[0, 1], &[2, 2],),
      Orientation::ClockWise
    );
  }

  #[test]
  fn orientation_limit_2() {
    let options = &[i8::MIN, i8::MAX, 0, -10, 10];
    for [a, b, c, d, e, f] in crate::utils::permutations([options; 6]) {
      PolygonScalar::cmp_slope(&[a, b], &[c, d], &[e, f]);
    }
  }

  #[test]
  fn cmp_around_1() {
    use num_bigint::*;
    let pt1 = [BigInt::from(0), BigInt::from(0)];
    let pt2 = [BigInt::from(-1), BigInt::from(1)];
    // let pt2 = [BigInt::from(-717193444810564826_i64), BigInt::from(1)];
    let vector = Vector([BigInt::from(1), BigInt::from(0)]);

    assert_eq!(
      Orientation::ccw_cmp_around_with(&vector, &pt1, &pt2, &pt1),
      Ordering::Greater
    );
  }

  #[test]
  fn sos_unit1() {
    assert_eq!(SoS::new(0, 1, 2), SoS::CounterClockWise)
  }

  #[test]
  #[should_panic]
  fn sos_unit2() {
    SoS::new(0, 0, 1);
  }

  #[test]
  fn sos_unit3() {
    assert_eq!(SoS::new(99, 0, 1), SoS::CounterClockWise);
  }

  #[proptest]
  fn sos_eq_prop(a: u8, b: u8, c: u8) {
    if a != b && b != c && c != a {
      let (a, b, c) = (a as u32, b as u32, c as u32);
      let one = &BigInt::from(1);
      let big_a = BigInt::from(a);
      let big_b = BigInt::from(b);
      let big_c = BigInt::from(c);
      let p = Point::new([big_a, one << a]);
      let q = Point::new([big_b, one << b]);
      let r = Point::new([big_c, one << c]);
      prop_assert_eq!(SoS::new(a, b, c).orient(), Orientation::new(&p, &q, &r));
    }
  }

  #[proptest]
  fn sos_rev_prop(a: u32, b: u32, c: u32) {
    if a != b && b != c && c != a {
      prop_assert_eq!(SoS::new(a, b, c), SoS::new(c, b, a).reverse());
      prop_assert_eq!(SoS::new(a, b, c), SoS::new(a, c, b).reverse());
      prop_assert_eq!(SoS::new(a, b, c), SoS::new(b, a, c).reverse());
      prop_assert_eq!(SoS::new(a, b, c), SoS::new(b, c, a));
    }
  }
}