rgeometry/orientation.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
use std::cmp::Ordering;
use crate::data::Vector;
use crate::PolygonScalar;
#[derive(PartialEq, Eq, PartialOrd, Ord, Debug, Copy, Clone)]
pub enum Orientation {
CounterClockWise,
ClockWise,
CoLinear,
}
use Orientation::*;
#[derive(PartialEq, Eq, PartialOrd, Ord, Debug, Copy, Clone)]
pub enum SoS {
CounterClockWise,
ClockWise,
}
// let slope1 = (2^q - 2^r) * (p - q);
// let slope2 = (2^q - 2^p) * (r - q);
impl Orientation {
/// Determine the direction you have to turn if you walk from `p1`
/// to `p2` to `p3`.
///
/// For fixed-precision types (i8,i16,i32,i64,etc), this function is
/// guaranteed to work for any input and never cause any arithmetic overflows.
///
/// # Polymorphism
///
/// This function works with both [Points](crate::data::Point) and [Vectors](Vector). You should prefer to
/// use [Point::orient](crate::data::Point::orient) when possible.
///
/// # Examples
///
/// ```rust
/// # use rgeometry::data::Point;
/// # use rgeometry::Orientation;
/// let p1 = Point::new([ 0, 0 ]);
/// let p2 = Point::new([ 0, 1 ]); // One unit above p1.
/// // (0,0) -> (0,1) -> (0,2) == Orientation::CoLinear
/// assert!(Orientation::new(&p1, &p2, &Point::new([ 0, 2 ])).is_colinear());
/// // (0,0) -> (0,1) -> (-1,2) == Orientation::CounterClockWise
/// assert!(Orientation::new(&p1, &p2, &Point::new([ -1, 2 ])).is_ccw());
/// // (0,0) -> (0,1) -> (1,2) == Orientation::ClockWise
/// assert!(Orientation::new(&p1, &p2, &Point::new([ 1, 2 ])).is_cw());
/// ```
///
pub fn new<T>(p1: &[T; 2], p2: &[T; 2], p3: &[T; 2]) -> Orientation
where
T: PolygonScalar,
{
// raw_arr_turn(p, q, r)
match T::cmp_slope(p1, p2, p3) {
Ordering::Less => Orientation::ClockWise,
Ordering::Equal => Orientation::CoLinear,
Ordering::Greater => Orientation::CounterClockWise,
}
}
/// Locate `p2` in relation to the line determined by the point `p1` and the direction
/// vector.
///
/// For fixed-precision types (i8,i16,i32,i64,etc), this function is
/// guaranteed to work for any input and never cause any arithmetic overflows.
///
/// This function is identical to [`Orientation::new`]`(p1, p1+v, p2)` but will never
/// cause arithmetic overflows even if `p+v` would overflow.
///
/// # Examples
///
/// ```rust
/// # use rgeometry::data::{Vector,Point};
/// # use rgeometry::Orientation;
/// let v = Vector([ 1, 1 ]); // Vector pointing to the top-right corner.
/// let p1 = Point::new([ 5, 5 ]);
/// assert!(Orientation::along_vector(&p1, &v, &Point::new([ 6, 6 ])).is_colinear());
/// assert!(Orientation::along_vector(&p1, &v, &Point::new([ 7, 8 ])).is_ccw());
/// assert!(Orientation::along_vector(&p1, &v, &Point::new([ 8, 7 ])).is_cw());
/// ```
pub fn along_vector<T>(p1: &[T; 2], vector: &Vector<T, 2>, p2: &[T; 2]) -> Orientation
where
T: PolygonScalar,
{
match T::cmp_vector_slope(&vector.0, p1, p2) {
Ordering::Less => Orientation::ClockWise,
Ordering::Equal => Orientation::CoLinear,
Ordering::Greater => Orientation::CounterClockWise,
}
}
pub fn along_perp_vector<T>(p1: &[T; 2], vector: &Vector<T, 2>, p2: &[T; 2]) -> Orientation
where
T: PolygonScalar,
{
match T::cmp_perp_vector_slope(&vector.0, p1, p2) {
Ordering::Less => Orientation::ClockWise,
Ordering::Equal => Orientation::CoLinear,
Ordering::Greater => Orientation::CounterClockWise,
}
}
pub fn is_colinear(self) -> bool {
matches!(self, Orientation::CoLinear)
}
pub fn is_ccw(self) -> bool {
matches!(self, Orientation::CounterClockWise)
}
pub fn is_cw(self) -> bool {
matches!(self, Orientation::ClockWise)
}
#[must_use]
pub fn then(self, other: Orientation) -> Orientation {
match self {
Orientation::CoLinear => other,
_ => self,
}
}
pub fn break_ties(self, a: u32, b: u32, c: u32) -> SoS {
match self {
CounterClockWise => SoS::CounterClockWise,
ClockWise => SoS::ClockWise,
CoLinear => SoS::new(a, b, c),
}
}
pub fn sos(self, other: SoS) -> SoS {
match self {
CounterClockWise => SoS::CounterClockWise,
ClockWise => SoS::ClockWise,
CoLinear => other,
}
}
// pub fn around_origin<T>(q: &[T; 2], r: &[T; 2]) -> Orientation
// where
// T: Ord + Mul<Output = T> + Clone + Extended,
// {
// raw_arr_turn_origin(q, r)
// }
#[must_use]
pub fn reverse(self) -> Orientation {
match self {
Orientation::CounterClockWise => Orientation::ClockWise,
Orientation::ClockWise => Orientation::CounterClockWise,
Orientation::CoLinear => Orientation::CoLinear,
}
}
pub fn ccw_cmp_around_with<T>(
vector: &Vector<T, 2>,
p1: &[T; 2],
p2: &[T; 2],
p3: &[T; 2],
) -> Ordering
where
T: PolygonScalar,
{
let aq = Orientation::along_vector(p1, vector, p2);
let ar = Orientation::along_vector(p1, vector, p3);
// let on_zero = |d: &[T; 2]| {
// !((d[0] < p[0] && z[0].is_positive())
// || (d[1] < p[1] && z[1].is_positive())
// || (d[0] > p[0] && z[0].is_negative())
// || (d[1] > p[1] && z[1].is_negative()))
// };
let on_zero = |d: &[T; 2]| match Orientation::along_perp_vector(p1, vector, d) {
CounterClockWise => false,
ClockWise => true,
CoLinear => true,
};
let cmp = || match Orientation::new(p1, p2, p3) {
CounterClockWise => Ordering::Less,
ClockWise => Ordering::Greater,
CoLinear => Ordering::Equal,
};
match (aq, ar) {
// Easy cases: Q and R are on either side of the line p->z:
(CounterClockWise, ClockWise) => Ordering::Less,
(ClockWise, CounterClockWise) => Ordering::Greater,
// A CoLinear point may be in front of p->z (0 degree angle) or behind
// it (180 degree angle). If the other point is clockwise, it must have an
// angle greater than 180 degrees and must therefore be greater than the
// colinear point.
(CoLinear, ClockWise) => Ordering::Less,
(ClockWise, CoLinear) => Ordering::Greater,
// if Q and R are on the same side of P->Z then the most clockwise point
// will have the smallest angle.
(CounterClockWise, CounterClockWise) => cmp(),
(ClockWise, ClockWise) => cmp(),
// CoLinear points have an angle of either 0 degrees or 180 degrees. on_zero
// can distinguish these two cases:
// on_zero(p) => 0 degrees.
// !on_zero(p) => 180 degrees.
(CounterClockWise, CoLinear) => {
if on_zero(p3) {
Ordering::Greater // angle(r) = 0 & 0 < angle(q) < 180. Thus: Q > R
} else {
Ordering::Less // angle(r) = 180 & 0 < angle(q) < 180. Thus: Q < R
}
}
(CoLinear, CounterClockWise) => {
if on_zero(p2) {
Ordering::Less
} else {
Ordering::Greater
}
}
(CoLinear, CoLinear) => match (on_zero(p2), on_zero(p3)) {
(true, true) => Ordering::Equal,
(false, false) => Ordering::Equal,
(true, false) => Ordering::Less,
(false, true) => Ordering::Greater,
},
}
}
}
// https://arxiv.org/abs/math/9410209
// Simulation of Simplicity.
// Break ties (ie colinear orientations) in an arbitrary but consistent way.
impl SoS {
// p: Point::new([a, 2^a])
// q: Point::new([b, 2^b])
// r: Point::new([c, 2^c])
// new(a,b,c) == Orientation::new(p, q, r)
pub fn new(a: u32, b: u32, c: u32) -> SoS {
assert_ne!(a, b);
assert_ne!(b, c);
assert_ne!(c, a);
// Combinations:
// a<b a<c c<b
// b a c => CW _ X _
// c b a => CW _ _ X
// a c b => CW X X X
// b c a => CCW _ _ _
// c a b => CCW X _ X
// a b c => CCW X X _
let ab = a < b;
let ac = a < c;
let cb = c < b;
if ab ^ ac ^ cb {
SoS::ClockWise
} else {
SoS::CounterClockWise
}
// if a < b {
// if a < c && c < b {
// SoS::ClockWise // a c b
// } else {
// SoS::CounterClockWise // a b c, c a b
// }
// } else if b < c && c < a {
// SoS::CounterClockWise // b c a
// } else {
// SoS::ClockWise // b a c, c b a
// }
}
pub fn orient(self) -> Orientation {
match self {
SoS::CounterClockWise => Orientation::CounterClockWise,
SoS::ClockWise => Orientation::ClockWise,
}
}
#[must_use]
pub fn reverse(self) -> SoS {
match self {
SoS::CounterClockWise => SoS::ClockWise,
SoS::ClockWise => SoS::CounterClockWise,
}
}
}
#[cfg(test)]
#[cfg(not(tarpaulin_include))]
mod tests {
use super::*;
use crate::data::Point;
use num::BigInt;
use proptest::prelude::*;
use test_strategy::proptest;
#[test]
fn orientation_limit_1() {
PolygonScalar::cmp_slope(
&[i8::MAX, i8::MAX],
&[i8::MIN, i8::MIN],
&[i8::MIN, i8::MIN],
);
}
#[test]
fn cmp_slope_1() {
assert_eq!(
PolygonScalar::cmp_slope(&[0i8, 0], &[1, 1], &[2, 2],),
Ordering::Equal
);
}
#[test]
fn cmp_slope_2() {
assert_eq!(
Orientation::new(&[0i8, 0], &[0, 1], &[2, 2],),
Orientation::ClockWise
);
}
#[test]
fn orientation_limit_2() {
let options = &[i8::MIN, i8::MAX, 0, -10, 10];
for [a, b, c, d, e, f] in crate::utils::permutations([options; 6]) {
PolygonScalar::cmp_slope(&[a, b], &[c, d], &[e, f]);
}
}
#[test]
fn cmp_around_1() {
use num_bigint::*;
let pt1 = [BigInt::from(0), BigInt::from(0)];
let pt2 = [BigInt::from(-1), BigInt::from(1)];
// let pt2 = [BigInt::from(-717193444810564826_i64), BigInt::from(1)];
let vector = Vector([BigInt::from(1), BigInt::from(0)]);
assert_eq!(
Orientation::ccw_cmp_around_with(&vector, &pt1, &pt2, &pt1),
Ordering::Greater
);
}
#[test]
fn sos_unit1() {
assert_eq!(SoS::new(0, 1, 2), SoS::CounterClockWise)
}
#[test]
#[should_panic]
fn sos_unit2() {
SoS::new(0, 0, 1);
}
#[test]
fn sos_unit3() {
assert_eq!(SoS::new(99, 0, 1), SoS::CounterClockWise);
}
#[proptest]
fn sos_eq_prop(a: u8, b: u8, c: u8) {
if a != b && b != c && c != a {
let (a, b, c) = (a as u32, b as u32, c as u32);
let one = &BigInt::from(1);
let big_a = BigInt::from(a);
let big_b = BigInt::from(b);
let big_c = BigInt::from(c);
let p = Point::new([big_a, one << a]);
let q = Point::new([big_b, one << b]);
let r = Point::new([big_c, one << c]);
prop_assert_eq!(SoS::new(a, b, c).orient(), Orientation::new(&p, &q, &r));
}
}
#[proptest]
fn sos_rev_prop(a: u32, b: u32, c: u32) {
if a != b && b != c && c != a {
prop_assert_eq!(SoS::new(a, b, c), SoS::new(c, b, a).reverse());
prop_assert_eq!(SoS::new(a, b, c), SoS::new(a, c, b).reverse());
prop_assert_eq!(SoS::new(a, b, c), SoS::new(b, a, c).reverse());
prop_assert_eq!(SoS::new(a, b, c), SoS::new(b, c, a));
}
}
}